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Abstract 
 

In the past, we have developed and presented a Fuzzy 
Decision Tree, more recently followed by an extension 
called a Fuzzy Decision Forest. The idea behind the 
forest is not only to represent multiple trees, but also to 
represent test alternatives at all levels of every tree. The 
resulting tree is in fact a 3-dimensional tree. A two-
dimensional slice is equivalent to a single decision tree. 
The forest allows multiple choices of tests in some or all 
nodes of the decision tree. These alternative tests can be 
used to enhance the classification accuracy of the tree. 
However, the major advantage of having multiple test 
choices is to have alternative test decisions when features 
in test data are unreliable or just missing. In the paper, 
we overview the ideas behind Fuzzy Decision Forest, and 
we illustrate its enhanced capabilities with a number of 
experiments with missing features. 
 
1. Introduction 
 

In today’s era of massive amounts of data, computer 
programs that are able to process and reason from data 
are of high importance. For classification tasks, decision 
trees proved to be one of the most successful 
methodologies [1][6][7]. The extracted knowledge, in the 
form of a decision tree along with inference procedures, 
has been praised for accuracy, efficiency, and 
comprehensibility.  

 Decision trees, originally proposed for symbolic 
domains and with a simple decision procedure [6], have 
enjoyed many methodological advancements, such as 
ability to produce binary trees and dealing with 
continuous data [1], new inference procedures, e.g., to 
compute probabilities of decisions [7], and finally 
incorporation of fuzzy sets and uncertain reasoning 
inferences to account for noisy and uncertain 
environments [2][8]. A decision tree is made up of two 
elements: a recursive top-down partitioning procedure, 
generating a decision tree, and then an inference rule 
from the resulting tree. The procedure starts with the 
training data, expressed by combinations of features 
according to the available variables and domains, and 
classified into some classes. The partitioning procedure 
selects one test at a time, usually based on one feature, 

and splits the data into subsets according to the tested 
features. The selected test is to maximize some objective, 
such as separation of examples of different classes [7]. 
The recursive procedure stops upon perfect class 
separation or based on some other objectives [7]. The 
subsequent inference rule uses the tree to assign new test 
data to some of the same classes. 

Fuzzy sets and logic have been proposed to deal with 
language or data related uncertainties [9]. Combined with 
uncertain reasoning, fuzzy representation provides for 
greater stability and robustness. This representation has 
been incorporated into decision trees, resulting in trees 
still satisfying their standard advantages, yet also more 
robust and stable [2][8]. A Fuzzy Decision Tree (FID) is 
one such extension [2]. FID can deal with data described 
by a mixture of symbolic and continuous variables. FID 
originally required all domains to be pre-partitioned into 
fuzzy sets. It has later been extended to allow a mixture of 
pre-partitioned and un-partitioned variables [3][4].  
However, FID still suffers from the same traditional 
disadvantage as all decision trees.  The decision tree 
procedure attempts to minimize the number of tests 
needed to classify the training data. This greatly improves 
comprehensibility, but it also reduces the amount of 
learned characteristics about the data. Recognizing this as 
a potential problem, researchers have proposed 
extensions, such as extracting a number of diverse 
decision trees, which subsequently vote on or apply 
another decision procedure to classify new data.  

A Fuzzy Decision Forest (FDF) [5] incorporates 
similar ideas into Fuzzy Decision Trees. The resulting 
knowledge is higher dimensional, and thus less 
comprehensible. Yet simple slices of the FDF forest 
reduce the representation to simple trees. Moreover, the 
resulting forest improves classification accuracy, 
especially when dealing with missing features in testing 
data. In this paper, we review the ideas behind Fuzzy 
Decision Forest, and then present some experimental 
results illustrating its enhanced capabilities. 
 
2. Fuzzy Decision Forest 
 

The procedure to build a decision tree selects a single 
test at every node of the tree, which maximizes some 
objectives on separation of data belonging to different 



classes.  This single test produces minimal knowledge – 
the decision tree procedure is an example of a 
discriminant learning procedure, where the objective is to 
minimize class descriptions, and thus to minimize the set 
of tested variables and features. When two tests offer 
similar quality in a node, one of them needs to be tossed 
away, and the decision sometime is quite random. The 
test that is tossed away reduces the knowledge expressed 
in the tree.  

Different tests performed in a node can lead to 
different decisions. Retaining those multiple tests, 
combined with a conflict resolution procedure, increases 
classification potentials.  This is especially important in 
two situations: 
1. The feature associated with the winning test may be 

noisy or inaccurate in a given test data. Retaining the 
alternative tests increases the predictive accuracy. 

2. The feature associated with the winning test can be 
missing in a given test data Traditional way to deal 
with this is to test all possible cases of the feature and 
then resolve the resulting conflicts [7].  Again, 
retaining other relevant tests allows alternatives for 
more comprehensive and informed reasoning. 

 

Figure 1. A Fuzzy Decision Forest. 
 
The Fuzzy Decision Forest extends FID trees by 

allowing alternative tests to be performed at all nodes. 
FDF builds the tree exactly like FID would [2], except for 
the following:  in a given node, more than one test can be 
selected. When this happens, each of the tests results in 
growing different subtrees. The actual selected tests, and 
the number of them, are based on some heuristics and 
parameters. Alternatives offering similar level of class 
separation are maintained; however, the number of 
potential alternative tests diminishes at deeper levels.  The 
resulting tree is in fact a forest if it has more than one test 
at the root. Moreover, alternative tests can also be 
explored at deeper levels, resulting in a 3-dim tree [5].  

One may produce a slice of the forest by selecting a 
single test at each node. A slice of the FDF forest is 
indeed an FID tree. Selecting the best test at each node 

with alternative tests produces a forest equivalent to the 
FID tree that would have been built from the same data. 

Of course one needs an inference procedure that is 
able to explore the extra information retained in the 
forest. FID provides a number of inference procedures 
[2]. Each inference procedure takes all leaves whose path-
restrictions match the test data and combines the 
classifications of those leaves in some fashion. When the 
data is matched by more than one tree in FDF, the result 
is simply a greater number of leaves participating in the 
final vote. Each slice of the tree carries out its own vote. 
Then, another inference combines the classification 
presented by each slice. The inference can be  

a) a sum of the individual votes for each class (a 
simple vote), 

b) a weighted sum, weighted by the strength of each 
test used in the slice producing the result (the slice 
matching the test data better has a higher vote), 

c) a weighted sum, weighted by the strength of each 
test used in the producing the result, additionally 
weighted by the number of training data matching 
the same tests in this slice (the slice matching the 
test data better but also having more training data 
has a higher vote). 

Figure 2. The three different slices of the decision 

forest from Figure 1. 
  
An FDF forest is illustrated in Figure 1, where we 

assume three variables A, B, and C, with domains as 
indicated.  The forest uses only two alternative tests in 
two nodes, and it is shown in 2-D.  

The illustrated forest can be sliced three different 
ways, as illustrated in Figure 2. Suppose the first slice 
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corresponds to the dominant FID tree that would have 
been constructed if not for the alternative tests. Now 
suppose we have test data with the following features: 
A=a2, B=b1, C=c1. The first slice would classify the data 
as belonging to the class in its l1 leaf, the second as 
according to its l2 leaf, and the third as according to its l3 
leaf. When resolving a potential conflict between these 
three responses, one may weight higher the response from 
l1 as coming from the dominant slice. Alternatively, if l2 
has many more training data, its response may be 
weighted higher. This illustrates the potential inferences 
from the forest. 

 
3. Experiments 
 

We have conducted two sets of experiments, one on 
actual data from the ML depository – Glass data, the 
other one with purposely-modified Glass data. 

 
3.1 Glass data 
 

Glass data is one of the standard data sets used in 
machine learning. It contains 214 data samples of 7 
different glass classes. Each data sample is described by 9 
continuous attributes without any missing values.  
 

Table 1. Training and testing on the Glass data. 
Method Training 

success  
Testing success w/o 

any missing features 
FID decision 
tree 67.9% 64.7% 

FDF decision 
forest 72.7% 69.8% 

 
First, we have trained an FID decision tree and an 

FDF decision forest in a 10-fold cross validation setup, 
measuring the error on the training data while facing the 
same termination criteria (to avoid overspecialization 
with one of the experiments).  The results are presented in 
Table 1. As seen, FDF forest trains to recognize the 
training data to a higher success rate.  

This by itself may not be relevant if FDF achieved 
higher training rate by overspecializing its trees. To verify 
that, we tested the generated FID tree and FDF forest with 
testing data, again in the same 10-fold cross-validation 
setup, starting with the actual testing data. The results are 
presented in Table 1 and indicate higher success rate from 
the FDF forest. Then, we repeated the same tests, but with 

various percentages of features removed from the testing 
sets. These results are presented in Figure 3. As seen, 
FDF presents higher robustness to missing features than 
FID alone.  

 
Figure 3. Testing with missing features on Glass data. 
 
3.2 Modified Glass data 
 

We have also modified the Glass data as follows:  for 
each of three random attributes, we have added two more 
attributes with feature values generated at random but in 
such a way that the correlation of the new attributes to the 
original attribute is 0.75 and 0.5. This was intended to 
simulate the case where one or more attributes are 
correlated and can produce similar tests. Then we 
repeated the previous 10-fold cross-validation 
experiment: training FID tree and FDF forest and then 
testing them on data with missing features. The results 
presented in Figure 4 indicate that in this case FDF is able 
to take advantage of the correlations in attributes to build 
additional slices to increase its prediction rate (given our 
run parameters, the number of slices increased from 6 to 
11). 
 

Figure 4. Testing with missing features on the 
modified Glass data. 
 
 
 
4. Conclusions 
 

We have presented the concept of a Fuzzy Decision 
Forest, which extends Fuzzy Decision Trees by allowing 
multiple tests to be retained at some nodes of the tree. The 
resulting tree is indeed a 3-dim forest. The forest can be 
sliced, producing single decision trees. However, a 
number of slices can be used in the inference procedure to 
classify test data. This procedure is especially helpful 
when some features in the test data are noisy, uncertain, 
or just missing. Experimental results do indeed verify that 
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the resulting forest is more capable to reason under such 
unfavorable yet often encountered conditions. 

The software is available from 
http://www.cs.umsl.edu/~janikow/FID. 
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